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 Chaos Diagram of Harmonically Excited 
Vibration Absorber Control Duffing’s 

Oscillator 
Salau T.A.O, Ajide O.O. 

 

Abstract— This study utilised positive Lyapunov exponents’ criteria to develop chaos diagram on the parameters space of 4-dimensional 
harmonically excited vibration absorber control Duffing’s Oscillator. Relevant simulations were effected by choice combination of constant 
step Runge-Kutta methods and Grahm Schmidt Orthogonal rules. Simulations of 4-dimensional hyper-chaotic models of modified Lorenz 
and Rösler were used for validation purposes. Lyapunov’s spectrums were obtained at (197 × 301)  mesh points of parameters space 

a).Lyapunov’s spectrum of modified Lorenz system by constant time step (NRK1) fourth order Runge-Kutta method (0.4208, 0.1650, -
0.0807, -26.4603) compare correspondingly well with (0.4254, 0.1286, 0.0000, -26.5493) reported by Yuxia et al. Similarly, Lyapunov’s 
spectrum of modified Rösler system by constant time step (NRK1) fourth order Runge-Kutta method (0.1424, 0.0051, -0.0041, -24.0831) 
compare correspondingly and qualitatively with (0.1287, 0.0149, -0.0056, -22.8617) reported by Marco (1996). The sum of Lyapunov 
exponents (-22.7237, -31.3107, -27.8797) in Rösler compare correspondingly and qualitatively with variation matrix measure –AVERT (-
24.0181, -30.9462, -28.1991) respectively for fourth, fifth and modified fifth order Runge-Kutta methods. The chaos diagram results 
suggested preferentially higher mass ratio for effective chaos control of Duffing’s Oscillator main mass. The parameters space in the region 
of relative lower mass ratio suffered irregular boundaries. The practical applications of this chaos diagram plot include, by instance, walking 
in the parameters-space of vibration absorber control Duffing’s Oscillator along suitable engineering paths.  

Keywords—    Chaos Diagram, Vibration Absorber, Duffing Oscillator, Lyapunov exponents, Lorenz and Rösler , Runge-Kutta methods 
and Grahm Schmidt Orthogonal rules  
   

——————————      —————————— 

1  INTRODUCTION                                                                     
ONTROL  of chaos relies on the fact that any chaotic    
attractor contains an infinite number of unstable periodic 
orbits. Chaos Control can be described as the 

stabilization, by means of small system perturbations, of one 
of these unstable periodic orbits (Wikipedia, 2012). The major 
reason for controlling chaos is to render an otherwise chaotic 
motion  more  stable  and  predictable,  which  is  often  highly  
beneficial in chaos dynamics. The perturbation must be tiny, 
to avoid significant modification of the system's natural 
dynamics.  Several  techniques  have  been  devised  for  chaos  
control and numerous research efforts have been made 
towards chaos control. Experimental control of chaos by one 
or  both  of  these  methods  has  been  achieved  in  a  variety  of  
systems, including turbulent fluids, oscillating chemical 
reactions, magneto-mechanical oscillators, and cardiac tissues. 
Sarnobat et al (2000) attempt the control of chaotic bubbling 
with  the  OGY  (ott,  Grebogi  and  Yorke)  method  and  using  
electrostatic potential as the primary control variable. 
Andrievskii and Fradkov (2004) carried out a comprehensive 
review on the problems and methods for control of chaos, 
which in the last decade was the subject of intensive concern.   
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It was reported in the review that the applications of chaos in 
diverse  fields  such  as  mechanics  (control  of  pendulums,  
beams, plates, friction), physics (control of turbulence, lasers, 
chaos in plasma, and propagation of the dipole domains) as 
well as in various branches of engineering such as mechanical 
systems (control of pendulum ,beams, plates, vibroformers, 
microcantilevers, cranes, and vessels), spacecraft, electrical 
and electronic systems, communication systems, information 
systems, and chemical and processing industries  are enor-
mous. The authors equally stated that the Complexity of the 
chaotic  dynamics  gives  rise  to  new  problems  of  control  that  
stimulate further development of the control theory. Control 
and Chaos for Vibro-Impact and Non-Ideal Oscillators has 
been examined (Silvio and Ibere, 2008). The authors proposed 
a satisfactory control procedure which helps in avoiding un-
desirable behaviour of mechanical systems with practical ap-
plications. A dynamics of stability and bifurcation analysis of 
an asymmetrically nonlinear absorber system that contains a 
main part and a nonlinear spring was proposed by Chiou-
Fong and Chiang-Na .The investigation reveals that the bifur-
cation sequences illustrate completely the complex phenom-
ena of system dynamics. Furthermore, this study show that 
the primary bifurcation orbit coexist with orbit of the secon-
dary responses via a saddle-node bifurcation in a specific pe-
riod excitation range. The results established the fact that a 
new phenomena occur in a strongly nonlinear system. The 
phenomenon of ideal synchronization of a pair of identical 
dynamical systems coupled by a one-to-one negative feedback 
mechanism is  described and explained by Synchronization of  
two chaotic oscillators via a negative feedback mechanism 

C



International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013                                                                                         2 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

(Andrzel and Tomasz, 2003). A nonlinear energy sink (NES) 
that is characterized by its ability to passively realize targeted 
energy transfer as well as multimodal damping has been ex-
amined by Viguié and Kerschen (2009). The perspective of 
dealing with MDOF linear primary structures requires the 
development of an efficient NES design procedure. The author 
proposes the basis of such a procedure based upon the bifur-
cation analysis of a system composed of a linear oscillator 
coupled to a NES, using the software MatCont. In the Ashraf 
et al (2004) paper, the dynamics of a forced Duffing oscillator 
has been studied by means of modern nonlinear, bifurcation 
and chaos theories to show that the system is ultimately ex-
periencing chaos. The authors were able to characterize and 
control this chaotic behavior. A nonlinear recursive Backstep-
ping controller was proposed and the transient performance 
was also investigated. Simulation results are obtained for the 
uncontrolled and controlled cases, validating the effectiveness 
of the proposed controller. The effect of random phase for 
Duffing-Holmes  equation  has  been  investigated  (Longsuo  ,  
2011). It was demonstrated that as the intensity of random 
noise properly increases, the chaotic dynamical behaviour will 
be suppressed by the criterion of top Lyapunov exponent, 
which is computed based on the Khasminskii’s formulation 
and the extension of Wedig’s algorithm for linear stochastic 
systems. The obtained results were further validated by the 
Poincar´e map analysis, phase plot, and time evolution on dy-
namical behaviour of the system, such as stability, bifurcation, 
and chaos. It can be inferred from this study that the random 
phase is the most important tool for Suppressing chaos as a 
nonfeedback control method Efforts has been made to study 
the dynamics and chaos control of a non-linear electromag-
netic seismometer system consisting of an extended Duffing 
electrical oscillator magnetically coupled with a natural 
Duffing mechanical oscillator (Sihem et al, 2006). Some bifur-
cation structures and the variation of the corresponding 
Lyapunov exponent are obtained in the study. The results ob-
tained showed that transitions from a regular behaviour to 
chaotic orbits occur for large amplitudes of the external excita-
tion. The application of a simple adaptive damping feedback 
controller to eliminate the chaotic behaviour in a controlled 
extended Duffing system was equally examined in order to 
regulate the chaotic motion of the electromagnetic seismome-
ter system around less complex attractors, such as equilibrium 
points  and periodic orbits.  The effectiveness and efficiency of  
the proposed feedback control strategy was illustrated by 
means of numerical simulations. A robust control scheme for a 
class of uncertain chaotic systems in the canonical form, with 
unknown nonlinearities has been presented by Samuel and 
Kakmeni (2003). To cope with the uncertainties, the authors 
combined Lyapunov methodology with observer design. The 
proposed strategy comprises an exponential linearizing feed-
back and an uncertainty estimator. The developed control 
scheme allows chaos suppression. According to the authors, 
the advantage of this method over the existing results is that 
the control time is explicitly computed. Simulations studies 
were conducted to verify the effectiveness of the scheme.  
 The dearth of literatures which characterizes the parameters 
space of 4-dimensional harmonically excited vibration ab-

sorber  control  Duffing’s  Oscillator  using  chaos  diagram  is  a  
strong motivation for this work. This paper employed positive 
Lyapunov exponents’ criteria in developing chaos diagram for 
this Duffing oscillator dynamics.  

2 METHODOLOGY 

 2.1 Equations of Motions: Harmonically excited and 
Vibration absorber control Duffing Oscillator 

 The detail physical model and nomenclatures regarding  sec-
ond  order  differential  nonlinear  equations  (1)  and  (2)  can  be  
found in Narayanan and Jayaraman (1989)  and Dolire and 
Salau (2012). The dynamics of main mass (M) and Absorber 
mass (m) are captured respectively with variables  x  and   y  
relative to corresponding datum. 
 
 

3 ( ) ( )c a ok k Fc kx x x x x y Sin t
M M M M M

 (1) 

( ) 0aky y x
m

                                           (2) 

Introducing the non-dimensional time t   equations  
(1) and (2) can be expressed in state space form as in equations 
(3) to (6). 
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Note that in equations (3) to (6) ,the state space for the main 

and absorber masses are represented respectively by 1 2( , )x x   
and  3 4( , )x x .  
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and a    in which case  2 2 2
a a

a
k km

M M m
 .  The 

present study characterized the coordinates of parameters 

plane ( versus a ) as  either  chaotic  or  not  using  the  esti-

mated positive Lyapunov exponent of the main mass com-

puted by Grahm Schmidt Orthogonal rules. Salau and Ajide 

(2012) refers, the variation matrix (A) for the vibration ab-

sorber control Duffing oscillator given by equations (3) to (6) is 

given by matrix equation (7).  

 

2
1 1 2 2

0 1 0 0
( 3 ) 0

0 0 0 1
0 0

c

a a

x
A        (7) 

 

 According to Michael (2000) as well as Salau and Ajide (2012), 

Lyapunov;s spectrum must sum to the trace of A (- ). 

 

2.2 Modified Lorenz Model by Yuxia et al:  
 

Yuxia Li et al (2005) proposed hyper-chaotic system with two 
nonlinear terms described by equations (8) to (11). This is a 4-
dimensional system and a modified form of Lorenz equations 
studied by Salau and Ajide (2012). Its 4-dimensions make it a 
good model choice for algorithms validation in the present 
study. The one to one corresponding state space variables are 
respectively , , ,x y z     and w   . 
 
 

1 2x x y                                              (8) 

3 4y x y w xz                                 (9) 

 

5z z xy                                              (10) 

 
kw x                                             (11) 

 
The corresponding variation matrix (A) for system of equa-
tions (8) to (11) is given by equation (12) 
  
 

 
 
 
 

1 2

3 4

5

0 0
( ) 1

0
0 0 0k

z x
A

y x
                (12) 

 
 
 
According to Michael (2000) as well as Salau and Ajide (2012), 

Lyapunov;s spectrum must sum to the trace of  

A  ( 1 4 5  ). 

 
 

2.3  Modified Rösler Model by Rösler:  
 
Addison (1997) as well as Ping and Rui Ding (2011) refers, 
Rösler  proposed hyper-chaotic system with only one nonlin-
ear term described by equations (13)  to (16)  which is  a  modi-
fied  form  of  Rösler  chemical  reaction  model,  see  Salau  and  
Ajide (2012). The 4-dimensional forms of this model make it a 
good choice for algorithms validation in the present study. 
The one to one corresponding state space variables are respec-
tively , , ,x y z   and w   . 
 

x y z                                              (13) 

1ry x y w                                      (14) 

 2rz xz                                           (15) 

3 4r rw z w                                      (16) 

The corresponding variation matrix (A) for system of equa-

tions (13) to (16) is given by equation (17) . 
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According to Salau.and Ajide (2012) , Lyapunov;s spectrum 

must sum to the average of trace of A over large N-iterations  

( 1 4
1

1 ( )
N

r i r
i

x
N

  ).  This  measure  quantity  was  here  

tagged AVERT. 

 
 

2.4 Driven Parameters and Initial Conditions Setting 
  

 Common to all studied cases is constant time step ( t =0.02) 
and Lyapunov’s exponent’s estimation reset period (i.e 

LEERP) equal (10 t ). For Case-I and Case-II transient 
period and steady solution periods are respectively (1000 t  ) 
and (10000 t ). For case-III transient and steady solution pe-
riods (10T, 10T) and (50T, 30T) were investigated for T equal 
excitation period (T = 2   seconds).   For Case-I  and Case-III  
initial conditions 1 2 3 4( , , , )x x x x  was set at (1, 0, 0, 0) and for 
Case-II was set at (-10, -14, 0.3, 29) recommended by Marco 
Sandri (1996). However the initial conditions for Lyapunov’s 
spectrum estimate for all cases are (1,0,0,0), (0,1,0,0), (0,0,1,0) 
and (0,0,0,0,1) in 1 2 3, , ,x x x   and  4x -directions respectively. 
 
2.5 Modified Lorenz Model by Yuxia et al: (Case-I)  
 
One set of the driven parameters utilised by Yuxia et al (2005) 

are     1 2 35 , 3 7 ,    4 12     and  20k   

with corresponding Lyapunov’s spectrum     

 
( 1 2 3 40.4254, 0.1286, 0, 26.5493 ). 

  This case was verified as part validation of the present study 
algorithms. 

 
2.6  Modified Rösler Model by Rösler: (Case-II)  
Driven parameters setting are, 1 0.25r , 2 3.0r , 

3 0.5r  and 4 0.05r  , and  for algorithms validation 
purpose. The corresponding Lyapunov’s spectrum (0.1287, 
0.0149, -0.0056, -22.8617) was reported by Marco Sandri   
(1996). 
 
2.7 Harmonically excited and Vibration absorber 

control Duffing’s Oscillator: (Case-III)  
 

Narayanan and Jayaraman (1989) recommended that com-
bination of; 

    10.21, 1.0, 0.168, 0.5o cP . 

It  is  ensured  that  chaotic  response  of  the  main  mass  and  

that some appropriate selected a  will  rendered  the  chaotic  

response periodic. However the appropriate mass ratio used 

was conspicuously missing. The focus of the present study 

therefore is characterization of the coordinates of plane 

( versus a  )  as  either  chaotic  or  not  using  the  estimated  

positive Lyapunov exponent of the main mass computed by 

Grahm Schmidt Orthogonal rules. The studied plane is 

0.01 0.99  versus 1.0 3.0a   with both variable 

axes traversed respectively at constant step of 0.005 and 0.01. 

  
2.8 Solutions Algorithms 

 
The transients and steady solutions of the models (Case-I, 
Case-II and Case-III) rate equations and the corresponding 
Lyapunov’s spectrum rate equations were sought for numeri-
cally and simultaneously using constant time step fourth, fifth 
and Butcher’s (1964) modified fifth order Runge-Kutta meth-
ods.  The  details  of  Grahm  Schmidt  Orthogonal  rules  can  be  
obtained in Marco (1996). The three Runge-Kutta methods are 
tagged respectively RK4, RK5 and RK5B. The two time step-
ping systems are tagged NRK1 and NRK2 respectively for 
constant one full time step and two half-steps in one time step. 

3 RESULTS AND DISCUSSION 
 
Lyapunov’s spectrum report by Yuxia et al (2005) refers. Table 
1 and 2 gives algorithms validation results. 
 
Table  1:  Lyapunov’s  spectrum  of  Case-I  using  fourth  order,  
fifth order and Butcher’s modified fifth order Runge-Kutta 
methods and NRK1 
  

                 
Lyapunov’s spectrum Relative 

Percentage Absolute 
Errors 

 Yuxia et 
al (Ac-

tual) 

RK4 RK5 RK5B RK4 RK5 RK5B 

1  0.4254 0.4208 0.4263 0.4017 1.1 0.2 5.6 

2  0.1286 0.1650 0.1013 0.2014 28.3 21.2 56.6 

3  0.0000 -0.0807 -0.0186 -0.0087 UD UD UD 

4  -
26.5493 

-
26.4603 

-
26.5107 

-
26.5933 0.3 0.1 0.2 

Trace(A) -
25.9953 

-
25.9552 

-
26.0018 

-
25.9989 0.2 0.0 0.0 

 
           Note that UD =undefined. 
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Table 2: Lyapunov’s spectrum of Case-I using fourth order, 
fifth order and Butcher’s modified fifth order Runge-Kutta 
methods and NRK2 
 

Lyapunov’s spectrum Relative 
Percentage Absolute 

Errors 
 Yuxia et 

al (Ac-
tual) 

RK4 RK5 RK5B RK4 RK5 RK5B 

1  0.4254 0.4210 0.3967 0.3940 1.0 6.7 7.4 

2  0.1286 0.1498 0.2011 0.1825 16.5 56.4 41.9 

3  0.0000 0.0129 -0.0203 -0.0208 UD UD UD 

4  -
26.5493 -26.5386 

-
26.5793 

-
26.5545 0.0 0.1 0.0 

Trace(A) -
25.9953 -25.9549 

-
26.0018 

-
25.9989 0.2 0.0 0.0 

 
Note that UD =undefined 

 
Tables 1 and 2 refers, the relative percentage absolute errors 

decreases averagely for all Runge-Kutta methods changing 
time step system from NRK1 to NRK2. Though the highest 
recorded relative percentage absolute error was 56.60 at RK5B 
versus NRK1, the overall Lyapunov’s spectrum actual varia-
tion falls within acceptability level in particular at NRK2 for 
all computation methods. Each of the Runge-Kutta method 
recommended average of two positive and two negative 
Lyapunov’s exponents at NRK1 and NRK2 respectively. The 
trace of A (trace (A)) recorded zero and 0.2 relative percentage 
absolute error for methods (RK5 and RK5B) and RK4 respec-
tively over the two time step systems. 
 
Table 3: Lyapunov’s spectrum of Case-II using fourth order, 
fifth order and Butcher’s modified fifth order Runge-Kutta 
methods and NRK 

Lyapunov’s spectrum Relative 
Percentage Absolute Errors 

 Marco 
Sandri 
(Actual) 

RK4 RK5 RK5B RK4 RK5 RK5B 

1  0.1424 0.1287 0.1223 0.1356 9.6 14.1 4.8 

2  0.0051 0.0149 -0.0124 -0.0029 192.2 343.1 156.9 

3  -0.0041 -0.0056 -0.0226 -0.0098 36.6 451.2 139.0 

4  -
24.0831 

-
22.8617 

-
31.3980 

-
28.0026 5.1 30.4 16.3 

Trace(A) -
23.9397 

-
22.7237 

-
31.3107 

-
27.8797 5.1 30.8 16.5 

AVERT 
NA 

-
24.0181 

-
30.9462 

-
28.1991    

 
Note that NA = Not available  
 

Referring to table 3 , the range of relative percentage absolute 
error for all quantities of interest and for RK4, RK5 and RK5B 
are respectively (5.1 - 192.2), (14.1 - 451.2) and (4.8 -156.9). The 
actual quantities of interest variation relative to available actual 
values are within acceptable numerical limits. The Trace (A) 
and AVERT compare very well for all methods (RK4, RK5 and 
RK5B). 

 
Table 4: Lyapunov’s spectrum of Case-II using fourth order, 
fifth order and Butcher’s modified fifth order Runge-Kutta 
methods and NRK2 
 

              
Lyapunov’s spectrum Relative 

Percentage Absolute 
Errors 

 Marco 
Sandri 

(Actual) 

RK4 RK5 RK5B RK4 RK5 RK5B 

1  0.1424 0.1133 0.1183 0.1274 20.4 16.9 10.5 

2  0.0051 0.0177 0.0088 0.0001 247.1 72.5 98.0 

3  -0.0041 0.0015 -0.0146 -0.0098 136.6 256.1 139.0 

4  -
24.0831 

-
25.4754 

-
27.9780 

-
27.8727 5.8 16.2 15.7 

Trace(A) -
23.9397 

-
25.3429 

-
27.8655 

-
27.7550 5.9 16.4 15.9 

AVERT 
NA 

-
27.3377 

-
27.6188 

-
28.0735    

 
Note that NA = Not available 

 
Referring to table 4, the range of relative percentage absolute 
error for all quantities of interest and for RK4, RK5 and RK5B 
are respectively (5.9 – 247.1), (16.2 - 256.1) and (10.5 -129.0). 
The actual quantities of interest variation relative to available 
actual values are within acceptable numerical limits. The Trace 
(A) and AVERT compare very well for all methods (RK4, RK5 
and RK5B). 

  

 
Figure 1: Variation of AVERT with number of steady iteration 
in hyper-chaos of Rösler using fourth order, fifth order and 
Butcher’s modified fifth order Runge-Kutta methods and 
NRK1 
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Figure 1 refers, the average AVERT value gravitate towards 
stable  value  across  methods  and  with  increasing  number  of  
steady iteration. This observation agreed with submission of 
Salau and Ajide (2012) regarding the trace of matrix (A) that 
are dependent on position variable on attractor of interest 
(here the hyper-chaos of Rösler).Furthermore, the trends of of 
AVERT variation for the three methods compare very well  at  
lower number of steady iteration, however with increasing 
iteration number RK4 shows significant deviation from the 
trend of RK5 and RK5B.  Background theoretical and compu-
tation knowledge from successful execution of case-I and case-
II enables the characterization of the coordinates of parameters 
plane (  versus a )    in case-III as either chaotic or not us-
ing the estimated positive Lyapunov exponent of the main 
mass computed by Grahm Schmidt Orthogonal rules. The re-
sults obtained are given in tables 5 and 6, and chaos diagram 
in figures 2 and 3 setting   as mass ratio and a   as ALPHA 
A. 
 
 

Table 5 : Lyapunov’s Spectrum of the Vibration Absorber 
Control Duffing Oscillator at   = 0.02,  a =1.27  , NRK1 
and NRK2. 
 
 
Lyapunov’s 
Spectrum 

NRK1 NRK2 
RK4 RK5 RK5B RK4 RK5 RK5B 

1  0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 

2  -0.0189 -0.0189 -0.0189 -0.0189 -0.0189 -0.0189 

3  -0.0339 -0.0339 -0.0339 -0.0339 -0.0339 -0.0339 

4  -0.1309 -0.1309 -0.1309 -0.1309 -0.1309 -0.1309 
Trace(A) 

=
4

1
i

i
 

 -0.1680 -0.1680 -0.1680 -0.1680 -0.1680 -0.1680 
 
 
 

Refeering table 5 ,the Lyapunov’s spectrum result is the same 

for all methods regardless of time step systems (NRK1 and 

NRK2) . Likewise the trace (A) = 
4

1
i

i
 is equal to -0.168 (  – 

the damp coefficient) across methods and time step systems. 

 
 
 
 
 
 
 
 
 

Table  6  :  Sample  Results  of  Lyapunov’s  Spectrum  over  
smooth variation of  and  at constant step of 0.005 and 0.01 
respectively and for NRK2 
 
Mass ratio 

( ) 
ALPHAA 

( a ) 
Lyapunov’ spectrum Trace (A) 

=
4

1
i

i
 

1  2  3  4  

0.02 1.08 -0.0100 0.0025 -0.0831 -0.0774 -0.1680 
0.02 1.09 -0.0089 0.0101 -0.0791 -0.0901 -0.1680 
0.02 1.10 -0.0200 0.0162 -0.0828 -0.0813 -0.1679 
0.02 1.11 -0.0215 0.0019 -0.0715 -0.0768 -0.1679 
0.02 1.12 0.0001 -0.0026 -0.0748 -0.0907 -0.1680 
0.02 1.13 0.0102 0.0054 -0.0850 -0.0986 -0.1680 
0.02 1.14 0.0121 0.0127 -0.0940 -0.0989 -0.1681 
0.02 1.15 0.0082 0.0209 -0.1004 -0.0966 -0.1679 
0.02 1.16 0.0008 0.0290 -0.1032 -0.0947 -0.1681 
0.02 1.17 -0.0028 0.0308 -0.1061 -0.0898 -0.1679 

0.02 1.18 -0.0013 0.0244 -0.1150 -0.0761 -0.1680 
0.02 1.19 0.0010 0.0135 -0.0867 -0.0959 -0.1681 
0.02 1.20 0.0039 -0.0059 -0.0646 -0.1015 -0.1681 
0.02 1.21 0.0055 -0.0153 -0.0702 -0.0880 -0.1680 
0.02 1.22 0.0037 -0.0196 -0.0725 -0.0796 -0.1680 
0.02 1.23 0.0015 -0.0208 -0.0516 -0.0971 -0.1680 
0.02 1.24 0.0052 -0.0355 -0.0595 -0.0782 -0.1680 
0.02 1.25 0.0140 -0.0101 -0.0634 -0.1085 -0.1680 
0.02 1.26 0.0175 -0.0134 -0.0370 -0.1350 -0.1679 
0.02 1.27 0.0157 -0.0189 -0.0339 -0.1309 -0.1680 
 
 
Referring table 6 either 1 or  2  is greater than zero for 

combination of   and a    to be listed as not guarantee  the 

control of chaotic response of the main mass in Duffing oscilla-

tor. The trace (A) = 
4

1
i

i
 is equal to -0.1680 ( -the damp 

coefficient) across the variation of   and  a . 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2: Chaos Diagram of the Main Mass in Vibration Absorber 
of Harmonically Excited Duffing’s Oscillator (10T, 10T ) 
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Figure 2 refers the parameters at the black reqions cannot effect 
chaos control,  but  chaos control  possible with parameters at  the 
blank regions. The chaos diagram suggested preferentially higher 
mass ratio for effective chaos control of Duffing’s Oscillator main 
mass. However,the appropriate engineering involves cautious 
selection of main mass chaos control parameters  in the region of 
relatively lower mass ratio that suffered irregular boundaries. 
Furthermore, similar quantitative and qualitative chaos diagram 
were obtained using fifth and modified fifth order Runge Kutta 
methods.Each chaos diagram contains respectively 12535 , 12533 , 
12533 mesh points for RK4, RK5 and RK5B. 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
Figure 3: Chaos Diagram of the Main Mass in Vibration Absorber 
of Harmonically Excited Duffing Oscillator (50T, 30T). 
 

Figure 3 is qualitatively the same as figure 2. The quantita-
tive difference is due to relative larger transient and steady 
solutions (50T, 30T) compare with corresponding (10T,10T) in 
figure 2. The chaos diagram (figure 3) contains 10303 mesh 
points compare with 12535 in figure 2 and for RK4. 

4 CONCLUSIONS 
 
This study validated by preliminary investigations of 
Lyapunov’s spectrum in hyper-chaotic modified 4-
dimensional Lorenz and Rösler dynamics models shows that 
Lyapunov exponent is a very effective dynamics characteris-
ing tool and that Grahm Schmidt rules cumbersome to imple-
ment measure it reliably. The chaos diagram results suggested 
preferentially higher mass ratio for effective chaos control of 
Duffing’s Oscillator main mass using vibration absorber. Prac-
tical engineering application of the chaos diagram will in-
volves cautious selection of main mass chaos control parame-
ters in the region of relatively lower mass ratio that suffered 
irregular boundaries. 
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